

target aquifer

CO2SC @ L

horizontal grid size:

- 25m × 25m in fine grid

21 Mar. 2006

Cross-well tomography; velocity drop

Alteration of formation barrier due to CO2 injection

Yasuhiro <u>YAMADA</u>,

Daisuke TANAKA, Sumihiko MURATA

Earth Resources Engineering Department,

Kyoto University

Background of experiments

 Casing cement and caprock can be pathways of CO₂ leakage when altered by the injected gas.

 Long term exposure of such formation barrier against CO₂ needs to be investigated.

CO2SC @ LBNL

Underground condition of CO₂

Critical Point

 $Tc = 31.1^{\circ}C$

Pc = 7.39MPa

At the injection point

 $T = 60.0^{\circ}C$

P = 10.3MPa

CO₂ should be in a supercritical condition at the injection point (1000m deep).

Research Objective

 To investigate the effects of supercritical CO₂ on the physical and geochemical properties of casing cement and cap-rock during a long term CO₂ exposure

The specimens & apparatus

 Mudstones
 sampling from surface outcrops at cap-rock horizons

- Class-G cement
- CO₂ stop cement

Observation of specimens

Thin section

instruments

microprobe

SEM

Polarization microscope

specimens

durations

cements 3months

mudstones 2months

CO2SC @ LBNL

Results of Mudstones

Ny-Mst Al-Mst mon Colour change during 3 months of mon storage in artificial prain. 2 mon No significant change after 1, 2 months

Changes in thin sections (microprobe)

0 mon 1 mon 2 mon Ny-Mst no photo no photo Al-Mst

No significant change after 1, 2 months

Changes of mudstones

 No visible change during the experiments, except for the colour change during storage.

Alteration of mudstone

No visible change on the surface, nor internal change. No alteration effect so far.

Results of casing cements surface changes

G-cement (0 month)

CO₂cement (0 month)

After 1 month <

Turn to brown

calcite crystals 12

Surface observations after 1 month exposure

Fractures in both specimens...

Class-G cement

CO₂ stop cement

Pressure release caused expansion of CO₂ volume that broke the samples...

C @ LBNL 13

Surface observations

Class-G cement

CO₂ stop cement

after 2 months

after 3 months

no apparent change

Changes on thin sections (microprobe)

0 month 1 month 2 months G-cement → visible alteration from surface CO₂cement

→ no such₂visible change

The front line (thin section)

(polarization microscope)

21 Mar. 2006

Changes in the matrix (microscope)

⇒ gradual change of colour (crystal formation)

Filling of pores (CO2cement)

Some of the voids filled by calcite crystallization

Summary of observations

- G-cement shows significant changes; crystallization in the matrix, front-line formation etc...
- CO₂ cement shows minor changes; filled large pores and large crystals on the surface.

Porosity and permeability change

Class-G cement

	Before	1 month
Porosity (%)	43.7	44.0
Permeability (md)	1.08	0.53

CO₂ stop cement

	Before	1 month
Porosity (%)	45.3	44.3
Permeability (md)	1.08	0.92

Porosity stable

Permeability dropped

Porosity slightly decreased Permeability decreased

Porosity and permeability measurements

- Pore spaces of both specimens are filled by calcite crystals, thus porosity should decrease.
- Porosity unchanged in G-cem, suggesting erosion compensated the crystallization.
- Permeability decrease in G-cem, less decrease in CO₂-cem.

Uniaxial compressive strength and tensile strength

	Class-G cement		CO ₂ stop cement	
	Before	1 month	Before	1 month
S _c (MPa)	27.6	-	10.5	17.3
S _t (MPa)	3.3	2.6	1.5	2.6

Sc: Uniaxial compressive strength

St: Tensile strength obtained by Brazilian test

G-cement weakening, CO₂-cem strengthen.

Conclusions

- Mudstones are strong enough for exposure of supercritical CO₂ for (at least) a few month.
- G-class cement is significantly altered by CO₂ exposure and weakened.
- CO₂ cement is slightly affected and even geomechanically stronger against alteration.

On going research

- Experiments with wet-super critical CO2
- Experiments with CO2-saturated water
- Geo-mechanical investigations
- Fracturing and crystallization
- Velocity measurements

Acknowledgements

 NEDO (New Energy Development Organization, Japan) for research funding

 RITE (Research center for Innovative Technology of Earth environment, Japan) for generous support

26